Abstract. It has been recently recognized that the availability of liquid water may be a controlling factor in the feedback between the physical processes of variably saturated liquid and gas flow on the one hand, and various chemical processes such as metal corrosion in an underground storage facility for radioactive waste on the other hand (e.g., Huang et al., 2021, and reference therein). Iron corrosion in anoxic conditions produces hydrogen gas and consumes water, as expressed by the following stylized chemical equation (e.g., Diercks and Kassner, 1988; Senior et al., 2021): 3Fe+4H2O⟶Fe3O4+4H2 Since water is an educt the corrosion reaction may be suspended or suppressed by the scarcity of water near the corroding surfaces. At the same time, gas pressure build-up through hydrogen generation may limit further water ingress. We developed a model that focuses on the close coupling between gas generation through iron corrosion and water availability. The feedback between iron corrosion, gas generation and liquid phase flow is considered by implementing the corrosion reaction in the subsurface flow and transport simulator PFLOTRAN (Hammond et al., 2012; Lichtner et al., 2015, 2020) making use of its coding provisions to implement source/sink terms for water and gas. These source/sink terms reflect the kinetics of the iron corrosion and its dependence on the educts, where the availability of water is approximated by the local liquid saturation. The model was applied to evaluate the mobility of radionuclides in, and their release from a hypothetical geological storage facility for radioactive waste. The radionuclides are traced through the emplacement chambers and drift by means of advective and diffusive transport. Parameter variations illustrate the influence of crucial modelling parameters on the simulation results.
Read full abstract