Reactive oxygen species (ROS) represent a broad range of chemical species including superoxide, hydroxyl, singlet oxygen, and hydrogen peroxide. Each species behaves differently in the cellular environment. Some can play specific roles as intracellular signaling molecules, while others act primarily as indiscriminate oxidants. Several recent reports have promoted the use of exogenous ROS as therapeutic agents with applications from cancer therapies to novel antimicrobials. However, therapeutics, specifically antibiotics, should either kill or inhibit the growth of harmful cells (bacteria here) without harming the host cells, and hence selectivity of action is of vital importance. Here, we show that among different ROS, only superoxide was found to be bactericidal, killing a range of multidrug-resistant (MDR) pathogens without affecting the viability or growth of mammalian cells. Superoxide has a high thermodynamic capacity to be a strong oxidant. However, its lack of reactivity with cellular components at a physiological pH, except for the inactivation of biosynthetic enzymes containing labile iron-sulfur clusters, is key to its selectivity. The role of iron in bacterial pathogenesis also makes superoxide a strong candidate for antimicrobial therapy. Additionally, using a series of selective scavengers, we show that the superoxide radical is therapeutically effective and selective compared to other ROS like hydroxyl radicals, confirming previous results that used Escherichia coli gene knockouts to show that superoxide selectively deactivates some enzymes rather than causing indiscriminate damage of cellular components. In our in vitro studies, intracellular superoxide generation using light-activated quantum dots yielded highly selective and effective antimicrobial action. We screened 45 clinical MDR bacterial isolates and observed inhibition/therapeutic action in all strains, highlighting the applicability of such nanoparticle superoxide therapy. These results can pave the way for rational design of nanoscale therapies as precision medicine.
Read full abstract