The Clinical and Laboratory Standards Institute (CLSI) lowered the Enterobacterales-susceptible/-resistant breakpoints for amikacin in 2023 from ≤16/≥64 mg/L to ≤4/≥16 mg/L and the breakpoints for gentamicin and tobramycin from ≤4/≥16 mg/L to ≤2/≥8 mg/L. Because aminoglycosides are frequently used to treat infections caused by multidrug-resistant (MDR) and carbapenem-resistant Enterobacterales (CRE), we evaluated the impact of these changes on the susceptibility rates (%S) of Enterobacterales collected from US medical centers. A total of 9809 Enterobacterales isolates were consecutively collected (1/patient) from 37 US medical centers in 2017-2021 and susceptibility was tested by broth microdilution. Susceptibility rates were calculated using CLSI 2022, CLSI 2023, and US Food and Drug Administration 2022 criteria. Aminoglycoside-nonsusceptible isolates were screened for genes encoding aminoglycoside-modifying enzymes (AMEs) and 16S rRNA methyltransferases (16RMT). The CLSI breakpoint changes mostly affected amikacin, especially against MDR (94.0%S to 71.0%S), extended-spectrum β-lactamase (ESBL)-producing (96.9%S to 79.7%S), and CRE (75.2%S to 59.0%S) isolates. Plazomicin was active against 96.4% of isolates and retained potent activity against CRE (94.0%S), ESBL-producing (98.9%S), and MDR (94.8%S) isolates. Gentamicin and tobramycin showed limited activity against resistant subsets of Enterobacterales. The AME-encoding genes and 16RMT were observed in 801 (8.2%) and 11 (0.1%) isolates, respectively. Plazomicin was active against 97.3% of the AME producers. The spectrum of activity of amikacin against resistant subsets of Enterobacterales was drastically reduced when interpretative criteria based on pharmacokinetic/pharmacodynamic parameters that are currently used to establish breakpoints for other antimicrobials were applied. Plazomicin was markedly more active than amikacin, gentamicin, or tobramycin against antimicrobial-resistant Enterobacterales.