Plasma tau phosphorylated at threonine 181 (p-tau181) and 217 (p-tau217) have demonstrated high accuracy for Alzheimer's disease (AD) diagnosis, defined by CSF/PET amyloid beta (Aβ) positivity, but most studies have been performed in research cohorts, limiting their generalizability. We studied plasma p-tau217 and p-tau181 for CSF Aβ status discrimination in a cohort of consecutive patients attending an academic memory clinic in Spain (July 2019-June 2024). All patients had CSF AD biomarkers performed as part of their routine clinical assessment. Aβ positivity was defined with a local cut-off of CSF Aβ1-42 < 600pg/mL; in patients with borderline Aβ1-42 values or when there was a mismatch between the Aβ and the T status (T + if CSF p-tau181 ≥ 65pg/mL), a ratio Aβ1-42/Aβ1-40 < 0.07 was used. Plasma p-tau217 and p-tau181 were measured retrospectively, from blood samples collected at first visit, with Fujirebio Lumipulse and Quanterix Simoa assays, respectively. We included 468 patients (mean age 67years, 50% female, 61% Aβ positive). Plasma p-tau217 outperformed plasma p-tau181 in discriminating CSF Aβ status (AUC 0.95 vs 0.90, p = 0.005). A 97.5% sensitivity and specificity plasma p-tau217 algorithm, classifying patients into three groups of Aβ probability (Low, Intermediate and High), resulted in 67% of patients in the Low and High groups, having their Aβ status predicted (as negative and positive, respectively) with 96% accuracy. The remaining 33% in the Intermediate group were candidates to undergo CSF/PET testing. A model with a 10% variation in p-tau217 levels yielded small changes in accuracy (95%). In conclusion, plasma p-tau217 could have discriminated CSF Aβ status in two-thirds of patients with very high accuracy in a memory clinic cohort. These results support the implementation of plasma p-tau217 as an initial diagnostic tool in memory clinics for AD diagnosis, reducing the need for more invasive/expensive testing.
Read full abstract