In this study, the performance of the cell-penetrating and fusogenic peptide, TAT-HA2, which consists of a cell-permeable HIV trans-activator of transcription (TAT) protein transduction domain and a pH-responsive influenza A virus hemagglutinin protein (HA2) domain, was comparatively evaluated for the first time in peptideplex, multicomponent, and conjugate siRNA delivery systems. TAT-HA2 in all three systems protected siRNA from degradation, except in the conjugate system with a low Peptide/siRNA ratio. The synergistic effect of different peptide domains enhanced the transfection efficiency of multicomponent and conjugate systems compared to that of peptideplexes, which was attributed to the surface configuration of TAT-HA2 peptides depending on the nature of attachment. Particularly, the multicomponent system showed better cellular uptake and endosomal escape than the peptideplexes, resulting in enhanced siRNA delivery in the cytoplasm. In addition, the presence of cleavable disulfide bonds in multicomponent and conjugate systems promoted the effective siRNA delivery in the cytoplasm, resulting in improved gene silencing activity. The multicomponent system reduced the level of luciferase expression in SKOV3 cells to 45% (±4). In contrast, the conjugate system and the commercially available siRNA transfection agent, Lipofectamine RNAiMax, caused luciferase suppression down to 55% (±2) at a siRNA dose of 100 nM. For the same dose, the peptideplex system could only reduce the luciferase expression to 65% (±5). None of the developed systems showed significant toxicity at any dose. Overall, the TAT-HA2 peptide is promising as a siRNA delivery vector; however, its performance depends on the nature of attachment and, as a result, its surface configuration on the developed delivery system.
Read full abstract