Deoxyribonucleic acid (DNA) nanotechnology has brought an unparalleled set of possibilities for self-assembled structures emerging as an independent branch of synthetic biology. The field of science uses the molecular properties of DNA to build nanoparticles and nanodevices that have the potential to bring breakthroughs in medical science. On the one hand, their biocompatibility, precision, synthetic ease, and programmability make them an ideal choice in drug delivery and healthcare. On the other, the lack of proper biodistribution profiles, stability inside the system, enzymatic cleavage, immune recognition, and translational barriers are some of the hurdles it faces. Many recent technological advancements are in progress to tackle these challenges, while some already have been used. These tools and technologies need to be understood and studied for the successful transition of these intelligent DNA nanostructures (DNs) to healthcare applications. This review thus, highlights some of the challenges being faced by the DNs in healthcare. Additionally, it provides an overview of the recent trends in using these devices in disease detection and remission and finally talks about the future scope and opportunities for an effective transition from bench to bedside.
Read full abstract