2001년 사자자리 유성우는 수십년 이래 최대 빈도로 많은 유성이 발생하여 전세계적으로 관측되며 많은 관심을 불러 일으켰다. 특히 유성우 극대기 시간이 동아시아의 11월 19일 새벽으로, 달의 위상과 보현산의 날씨가 관측하기에 최적인 조건을 보였다. 본 논문은 보현산 천문대에 고층대기 관측용으로 설치된 전천 카메라를 이용해서 유성우 극대기가 예측된 2001년 11월 19일 01:00∼05:40(KST)동안 관측한68장의 전천 화상을 분석하였다. 이 기간 동안 전천 화상에 모두 172개의 유성이 기록되었다. 이 관측 개수에 International Meteor Organization에 육안 관측으로 보고된 천정 시간율(Zenith Hourly Rate, ZHR), 3000과 등급 분포 지수, 2를 적용하면, 전천 화상에 나타난 유성의 한계 등급이 약 3등급으로 추정된다. 이 중 화상 밝기가 분명한 83개의 유성에 대해 근처 표준성의 자기와 비교하여 등급을 결정하였다. 이 때 유성 통과 시간의 계산에 필요한 유성의 각속도는 유성 진입의 기하학적 성질을 이용하여 유성과 사자자리 방사점과의 사이각을 변수로 하는 간단한 식으로 유도하였다. 이렇게 결정된 83개의 유성이 -1∼-6등급 사이에 분포하며, -3등급 근처에서 최대를 보인다. 그러나 이 등급 분포는 육안 관측과 비교하여 추정한 전천 카메라의 한계 등급보다 상당히 작은(밝은) 범위에 있다. 이런 차이는 순간적인 육안 관측과 노출시간이 긴 CCD 관측과의 특성 차이에 기인하는 것으로 판단된다. 이 특성 차이를 분석하기 위해 육안 관측과 합치하도록 유성 지속 시간을 조절 변수로 하여 등급을 재결정하였다. 재결정된 등급의 상대적 분포는 원리적으로 결정한 등급 분포와 유사하며, 약 0등급 근처에서 최대를 가진다. 이 상대 분포는 육안 관측에 민감한, 희미한(1∼6등급)유성들이 등급이 감소함에 따라 일률적으로 개수가 감소하는 것과는 상당히 다른 분포이다. 따라서 우리의 관측 결과는 2001년 사자자리 유성우의 극대 시간 전후 2시간에 적어도 0등급 이하의 밝은 유성이 상대적으로 많이 발생하였을 것으로 해석된다. 이런 밝은 유성의 빈도는 유성우 특성 연구에 중요한 의미를 가진다. 그러나 표준성만을 이용해 결정된 유성 등급은 유성의 지속 시간에 대한 불확실성과 전천 카메라 감응도의 비선형성에 의한 불확실성을 내포하고 있음을 지적해 둔다. The 2001 Leonid meteor storm has been observed all over the world, and its most intense flux since the last few decades has caused great interest among both laymen and experts. Especially, its maximum hours occurred at dawn hours of Nov. 19 in the east Asia, during which moonless clear night at the Mt. Bohyun allowed us near perfect condition of observation. Observation was carried out in the period of 01:00∼05:40(KST), which include the predicted maximum hours, with all-sky camera installed for upper atmospheric airglow research. Tn this paper we analyze 68 all-sky images obtained in this period, which contain records of 172 meteors. Utilizing the zenith hourly rate(ZHR) of 3000 and magnitude distribution index of 2, which were reported to International Meteor Organization by visible observers in the east Asia, we estimate the limiting magnitude of about 3 for meteors detected in our all-sky images. We then derive magnitudes of 83 meteors with clear pixel brightness outlines among the initially detected 172 meteors by comparing with neighbor standard stars. Angular velocities of meteors needed for computing their passing times over an all-sky image are expressed with a simple formula of an angle between a meteor head and the Leonid radiant point. The derived magnitudes of 83 meteors are in the range of -6∼-1 magnitude, and its distribution shows a maximum new -3mag. The derived magnitudes are much smaller than the limiting magnitude inferred from the comparison with the result of naked-eye observations. The difference may be due to the characteristic difference between nearly instantaneuous naked-eye observations and CCD observations with a long exposure. We redetermine magnitudes of the meteors by adjusting a meteor lasting time to be consistent with the naked-eye observations. The relative distribution of the redetermined magnitudes, which has a maximum at 0 mag., resembles that of the magnitudes determined with the in-principle method. The relative distribution is quite different from ones that decrease monotonically with decreasing magnitudes for meteors(1∼6) sensitive to naked-eye observations. We conclude from the magnitude distribution of our all-sky observation that meteors brighter than about 0 mag., appeared more frequently during the 2001 Leonid maximum hours. The frequent appearance of bright meteors has significantly important implication for meteor research. We noted, however, considerably large uncertainties in magnitudes determined only by comparing standard stars due to the unknown lasting time of meteors and the non-linear sensitivity of all-sky camera.
Read full abstract