Currently, there is a significant increase in the incidence of cancer of the central nervous system. Determination of the boundaries of intracerebral and intramedullary tumors is especially difficult. The urgency of the problem of determining the boundaries of astrocytic tumors is due to the peculiarities of their growth along myelinated nerve fibers and vessels, leading to the infiltration of healthy white matter by tumor cells, which affects the high frequency of postoperative relapses. The complexity of surgery for intramedullary tumors of the spinal cord is that the tumor does not always have a clear border and the risk of injury is high due to the smaller size of the operated area compared to the brain. Reliable information regarding the volume of the resected tumor should be obtained by intraoperative imaging. The solution to this problem is implemented mainly in three directions: the use of intraoperative computed tomography, magnetic resonance imaging and ultrasound scanning, and various combinations of these methods. Unfortunately, all these methods of intraoperative diagnostics do not allow real-time examination of tissues in an operating wound and/or do not provide a simultaneous analysis of both structural and metabolic changes. The limitations of intraoperative navigation methods in neurosurgery have led to the relevance of the development of an accurate spectroscopic method for in vivo determination of the content of specific metabolic markers and structural changes accompanying the development of the tumor process in the nervous tissue. Various approaches to intraoperative navigation based on optical spectroscopy are called optical biopsy. In this article, we present the methods and tools developed in recent years for spectroscopic guidance in neurooncology. First of all, this, of course, concerns the analysis of spectral dependences recorded before, during and after tumor removal. We have used such modalities of optical spectroscopy as fluorescence, diffuse reflectance spectroscopy and spontaneous Raman scattering. An equally important issue on the way to increasing the efficiency of tumor resection is the development of new instrumentation; therefore, we have developed a number of new devices, which are a combination of well-known neurosurgical instruments and laser and fiber-optic technologies. Last but not least is the issue of rapid classification of the studied tissues based on the recorded signals, which was solved by us using machine learning methods.
Read full abstract