This study provides a novel and comprehensive assessment of solar photovoltaic (PV) panel performance under varying environmental conditions, integrating laboratory experiments with real-world field studies to address challenges specific to mining operations. The research uniquely explores the combined effects of shading, temperature, humidity, dust deposition, and tilt angle, delivering actionable insights for optimizing PV systems in harsh conditions. Laboratory experiments demonstrated that a parallel configuration significantly minimizes power losses under partial shading, while a rise in temperature from 35 to 75°C resulted in a notable 21.34% and 29.12% power output reduction for monocrystalline and polycrystalline panels, respectively. Furthermore, increased humidity (65.40 to 98.20%) caused a 35.82% decline in power output due to scattering effects. Field studies conducted in a surface mining environment revealed that dust accumulation led to a substantial 43.18% drop in maximum power output after 5days, emphasizing the importance of regular cleaning. Optimal energy capture was achieved at a 15° tilt angle, aligning with the site's latitude. These findings underscore the novelty of using combined experimental approaches and field validation to improve PV performance in mining operations. Practical recommendations, including parallel configurations to mitigate shading losses, temperature regulation strategies, and frequent cleaning protocols, are proposed to enhance the sustainability and efficiency of renewable energy systems in challenging environments.
Read full abstract