It is hindered by the limited light time that the development of photocatalysis technology, which is a clean and energy-saving advanced oxidation process. In this work, a 2D/2D Ti3C2/porous g-C3N4 nanolayers composited van der Waals (VDW) heterostructure photocatalyst (Ti3C2/PCN) was prepared by a straightforward vacuum filtration method after an ultrasonic stripping process. In this Ti3C2/PCN composite photocatalyst, PCN nanolayers play the role of absorbing visible light, while Ti3C2 nanolayers form VDW heterojunction with PCN nanolayers, which is beneficial to migration of photo-generated electrons from PCN to Ti3C2. The band structure match of Ti3C2/PCN and the build-in electric field from the VDW heterojunction both favor the effective separation and migration of photo-induced charge carriers that is why the Ti3C2/PCN composite shows good day-photocatalytic capability with 98% phenol removal efficiency. Besides, as a good electronic storage material, the Ti3C2 can store excess photo-generated electrons under light irradiation and release them when exposed to electron acceptors in the dark condition. Therefore, the night-photocatalysis can work out even without sunlight, in which 32% phenol was decomposed. In addition, the universality of Ti3C2/PCN day-night photocatalytic system is proved by the degradation of various organic pollutants. The design of this day-night photocatalyst can facilitate the application of photocatalytic reaction to actual environmental scenes, since it reduces the limitation imposed by the presence or absence of sunlight.
Read full abstract