Abstract. Soil erosion is a primary factor limiting the productive capacity of many crop production fields and contributing to sediment and nutrient impairments of water bodies. Loss of topsoil is especially critical for areas of limited topsoil depth, such as the claypan area of the central United States. More than a century of conventional agricultural practices have eroded the topsoil and, in places, exposed the unproductive clay layer. This clay layer is impervious, limiting water infiltration and root penetration, and severely restricting agricultural productivity. Previous studies have documented changes in topsoil thickness using apparent electrical conductivity (ECa). However, that methodology is limited by its shallow depth of measurement within the soil profile, and as such cannot adequately explore factors within the soil profile that potentially contribute to topsoil erosion. In this study, we identified areas of limited topsoil depth using crop yields and ECa. Two areas within the production field varying in crop production and ECa were selected for detailed measurements using Electrical Resistivity Tomography. This methodology allowed delineation of soil stratigraphy to a depth of 5.3 m. The erodibility of undisturbed soil samples from the two areas were measured in an Erosion Function Apparatus to obtain the critical shear stress, or the applied stress at which soil begins to erode. Based on resistivity measurement, the highly productive region of the field had a thick (1.0-2.0 m) soil layer of saturated clayey sand soil over a uniform sandy material, with minimal clay layer. This soil had a critical shear stress of 12 Pa. The extent of historical erosion was evident in the poorly-producing area, as only a thin band of topsoil material remained over a thicker clay layer. The unproductive area with exposed clay layer had a critical shear stress of 128 Pa, indicating it was more resistant to erosion than the highly productive region. The clay layer was found to extend to 1.3-1.5 m in depth in the soil profile in the poorly producing area. Below this layer was a layer with similar resistivity to the high-producing region. The data reveal the extent of historical erosion within the crop production field and highlight significant variability in measured soil properties within a field of identical production practices. While spatial variations in topsoil have long been considered in developing management practices to improve soil health and productive capacity, our results indicate the importance of identifying variability of subsoil characteristics to address long-term impacts on soil erosion and productivity. Keywords: Soil erosion, Soil electrical conductivity, Claypan soil, Productive capacity, Electrical resistivity tomography.
Read full abstract