We examined the ability of short-wave infrared (IR) light in the λ1.5-3.0 µm region of the infrared emission spectrum to accomplish C−Cπ bond construction reaction between π-excessive azaheteroaromatic and different carbonyl substrates supported on a bentonitic clay catalyst in solventless condition via a three-component condensation reaction. Preliminary studies show that the implementation of a domestic Flavor-Wave® oven fitted with a halogen heater lamp as a chemical reactor was as effective as the use of near IR light (λ1.1 µm) in fostering batch-wise organic reactions. Overall, this approach reveals its potential exploitation as an energy-efficient source to assemble biologically engaging (hetero)arenebisindolylmethanes framework, in the same way, that assure its sustainable development as for efficient generation of small libraries of molecules comparable to high-tech instrumentations performances.