Urbanization increases the number of impervious surfaces in watersheds, reducing infiltration and evapotranspiration, which increases runoff volumes and the risks of flooding and the pollution of water resources. Nature-based solutions (NBS) mitigate these effects by managing water volume and quality, restoring the hydrological cycle, and creating sustainable livelihoods that can promote socioeconomic equity by providing green space. In light of the aforementioned information, this study analyzes the hydrological response of NBS in La Guapil, a densely populated and socioeconomically vulnerable area of Costa Rica with approximately 80% impervious surfaces, focusing on their effectiveness in stormwater management and improving hydrological conditions. Field data from the study area’s storm drainage system, as well as hydrological analyses, were collected and processed to evaluate RCP8.5 climate change scenarios using the Clausius–Clapeyron (CC) relationship. Three scenarios were proposed: (1) the “status quo”, reflecting current conditions, (2) green roofs and green improvements, and (3) detention ponds and green improvements, evaluated using the SWMM, with the latter scenario also using the Iber model. Simulations showed that Scenario 2 achieved the greatest reduction in peak flow (53.74%) and runoff volume (57.60%) compared to Scenario 3 (peak: 28.37%; volume: 56.42%). Both scenarios demonstrate resilience to climate change projections. The results of this study provide a foundation for further research into NBS in Costa Rica and other comparable regions.
Read full abstract