Abstract
The Clausius-Clapeyron (CC) equation is generally preferred to obtain dissociation enthalpies (ΔH) of hydrate-forming systems due to its ease of use. The application of other direct and indirect methods becomes more problematic if complex additives such as ionic liquids (ILs) are also present in the system. In this work, around 400 equilibrium data points for methane hydrates in the presence of over 80 ILs were collected from the literature in the temperature and pressure ranges of (272.10 – 306.07) K and (2.48 – 100.34) MPa, respectively. The ΔH of methane hydrates in the absence and presence of ionic liquids (ILs) have been calculated using the CC equation. The compressibility factor (z), required to calculate ΔH at each phase equilibrium condition has been obtained from three different approaches viz., Peng-Robinson (PR) equation of state, Soave-Redlich-Kwong (SRK) equation of state and Pitzer (Pz) correlation. The results were compared to the experimentally reported dissociation enthalpy (54.5 ± 1.5 kJ.mol−1) of methane hydrates. The role of the compressibility factor along with the slope of the equilibrium data set and the temperature/pressure range in determining the outcome of the CC equation has been discussed. The effect of molar mass, molar volume, and hydrate suppression temperature of the ILs on the ΔH of methane hydrates has been explored. The tested ILs do not show a systematic and significant influence on enthalpies, rather they show a large scattering in the ΔH values, which might mask any existing subtle effect of the ILs on the dissociation enthalpies. Therefore, this approach should be dealt with care to obtain molecular-level insights.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.