IT IS well-known that the classifying space BG of a Lie group G is the geometric realization of a simplicial manifold, i.e. a semi-simplicial set whose p-dimensional simplices constitute a C” manifold and whose boundary and degeneracy operators are C” maps (see e.g. Segal[231). In the study of characteristic classes in real cohomology it is therefore natural to look for a De Rham complex for a simplicial manifold X = {X,}. An obvious candidate is the total complex a*(X) of the double complex (aq(X,), 6, &) of C” q-forms on X,, where dx is the usual exterior differential and where 6 is the co-boundary of simplicial cochains. This is studied in a recent paper by Bott-Shulman-Stasheff [4], where one can find a proof of the fact that the homology H(&*(X)) is naturally isomorphic to the singular cohomology with real coefficients of the realization ]]X]]. However there is an even more natural De Rham complex A *(X) associated to a simplicial manifold where a “form” is roughly speaking a C” form on llX]l (see 02 for a precise definition). For X a discrete simplicial set the construction of A *(X) goes back to Whitney [26] and has recently been used by Sullivan[25] in his study of the rational homotopy type of a manifold. The advantage of A *(X) is (apart from the suggestive nature of the definition) that the multiplication is graded commutative as in the case of an ordinary manifold and so the usual Chern-Weil theory carries over word by word to the universal case X = NG, the nerve of a Lie group G. To a great extent this just leads to a reformulation of previous constructions by Bott and Shulman (see [2] and [3]) and by Kamber-Tondeur[l3]. However the present point of view gives rise to an interesting formula for the characteristic classes of flat bundles which we shall now describe. Let G be a connected semi-simple real Lie group with finite center and choose a maximal compact subgroup K 2 G. Let fi and I be the corresponding Lie algebras and let H*(g, f) be the relative Lie algebra cohomology. For a homomorphism f: I + G where I is a discrete group there is a well-known characteristic homomorphism jr: H*(g, f)+ H*(Br) whose definition via De Rham cohomology goes back to Matsushima[ 171 (see Kamber-Tondeur[ 131, $8 or $4 below) and which has recently been studied by Bore1 [l] for arithmetic subgroups I. Now H*(Br) is canonically isomorphic to H*(T) the Eilenberg-MacLane group cohomology of I with real coefficients (see e.g. MacLane [ 161, chapter 4, P5) and we want to express jr in terms of explicit cochains. Let g = p @ f be a Cartan decomposition (see e.g. Helgason[ 101, chapter 3, 57). Then a class in H’(fl, I) is represented by an alternating q-form cp on g/f = p. By left translation this gives a closed C” q-form 6 on G/K (the differential of the complex A*(p) is actually 0 since [p, p] c f). Endowed with a left invariant Riemannian metric G/K is a non-compact globally symmzric space and I acts via f as a group of isometries on G/K (so we shall write -+x instead of f(y)x for x E G/K and y E I). Now let (r,, . . . , yq) E (r)’ and let o = {K} E G/K be the base point. We define the geodesic simplex A(y,, . . . , yq) g G/K inductively as follows. A(-y,) is the geodesic arc from o to ylo and generally A(r,, . . . , yq) is the geodesic cone on yl . A(?*, . . . , yq) with top point o. The ordering of the vertices o, y,o, y,-yZo, . . . , ylyz . . . yqo, determines a natural orientation of A(?,, . , . , yq). In this notation we shall prove (54):