ABSTRACTBrain tumors are prevalent forms of malignant neoplasms that, depending on their type, location, and grade, can significantly reduce life expectancy due to their invasive nature and potential for rapid progression. Accordingly, brain tumors classification is an essential step that allows doctors to perform appropriate treatment. Many studies have been done in the sector of medical image processing by employing computational methods to effectively segment and classify tumors. However, the larger amount of information collected by healthcare images prohibits the manual segmentation process in a reasonable time frame, reducing error measures in healthcare settings. Therefore, automated and efficient techniques for segmentation are crucial. In addition, various visual information, noisy images, occlusion, uneven image textures, confused objects, and other features may impact the process. Therefore, the implementation of deep learning provides remarkable results in medicinal image processing, particularly in the segmentation and classification process. However, conventional deep learning‐assisted methods struggle with complex structures and dimensional issues. Thus, this paper develops an effective technique for diagnosing brain tumors. The main aspect of the proposed system is to classify the brain tumor types by segmenting the affected regions of the raw images. This novel approach can be applied for various applications like diagnostic centers, decision‐making tools, clinical trials, medical research institutes, disease prognosis, and so on. Initially, the requisite images are collected from standard datasets and further, it is subjected to the segmentation period. In this stage, the Multi‐scale and Dilated TransUNet++ (MDTUNet++) model is employed to segment the abnormalities. Further, the segmented images are given into an Adaptive Dilated Dense Residual Attention Network (ADDRAN) to classify the brain tumor types. Here, to optimize the ADDRAN technique's parameters, an Improved Hermit Crab Optimizer (IHCO) is supported, which increases the accuracy rates of the overall network. Finally, the numerical examination is conducted to guarantee the robustness and usefulness of the designed model by contrasting it with other related techniques. For Dataset 1, the accuracy value attains 93.71 for the proposed work compared to 87.86 for CNN, 90.18 for DenseNet, and 89.56 and 90.96 for RAN and DRAN, respectively. Thus, supremacy has been achieved for the recommended system while detecting the brain tumor types.
Read full abstract