Abstract Mixed pixels occur commonly in remotely-sensed imagery, especially those with a coarse spatial resolution. They are a problem in land-cover mapping applications since image classification routines assume ‘pure’ or homogeneous pixels. By unmixing a pixel into its component parts it is possible to enableinter alia more accurate estimation of the areal extent of different land cover classes. In this paper two approaches to estimating sub-pixel land cover composition are investigated. One is a linear mixture model the other is a regression model based on fuzzy membership functions. For both approaches significant correlation coefficients, all >0·7, between the actual and predicted proportion of a land cover type within a pixel were obtained. Additionally a case study is presented in which the accuracy of the estimation of tropical forest extent is increased significantly through the use of sub-pixel estimates of land-cover composition rather than a conventional image classification.