Forest site classification is a prerequisite to successful integrated forest resources planning and management. Traditionally,site classification has emphasized a phytocentric approach, with tools such as the site index having a rich and longhistory in forest site evaluation. The concept of site index was primarily devised to assess site productivity of an even-aged,single-species stand. Site index has been the primary method of forest site evaluation in support of management for traditionalforest products. However, this method of site classification has been criticized as the needs, perspectives andsocial values of the public regarding forest management have changed the emphasis from timber production to multiplevalueforestry practices. There are alternative approaches to forest site classification that have the potential to meet thegrowing demands placed on forest information for inventory and modeling purposes. Ecological Land Classification(ELC), is a phytogeocentric approach that stratifies the landscape into ecologically meaningful units (ecosites) based onsubstrate characteristics, moisture regime and canopy composition. This approach offers a more holistic view of site productivityevaluation; however, until recently it has been difficult to acquire data to support widespread mapping ofecosites. Remote sensing technology along with predictive modeling and interpretive mapping techniques make the applicationof an ecosite-based approach at the forest landscape level possible. As forest management moves towards the considerationof a broader set of resources (e.g., woody biomass), there is an opportunity to develop new tools for linking forestproductivity to the sustainable production of forest bioproducts with forest ecosites as a solid foundation forsegmenting the landscape. Key words: forest site classification, site index, site productivity, Ecological Land Classification (ELC), ecosites, forest biomass,bioproducts