ABSTRACT We conducted a GPU-accelerated reprocessing of $\sim 87~{{\ \rm per\ cent}}$ of the archival data from the High Time Resolution Universe South Low Latitude (HTRU-S LowLat) pulsar survey by implementing a pulsar search pipeline that was previously used to reprocess the Parkes Multibeam Pulsar Survey (PMPS). We coherently searched the full 72-min observations of the survey with an acceleration search range up to $|50|\, \rm m\, s^{-2}$, which is most sensitive to binary pulsars experiencing nearly constant acceleration during 72 min of their orbital period. Here we report the discovery of 71 pulsars, including six millisecond pulsars, of which five are in binary systems, and seven pulsars with very high dispersion measures (DM $\gt 800 \, \rm pc \, cm^{-3}$). These pulsar discoveries largely arose by folding candidates to a much lower spectral signal-to-noise ratio than in previous surveys and by exploiting the coherence of folding over the incoherent summing of the Fourier components to discover new pulsars as well as candidate classification techniques. We show that these pulsars could be fainter and on average more distant as compared with both the previously reported 100 HTRU-S LowLat pulsars and the background pulsar population in the survey region. We have assessed the effectiveness of our search method and the overall pulsar yield of the survey. We show that through this reprocessing we have achieved the expected survey goals, including the predicted number of pulsars in the survey region, and discuss the major causes why these pulsars were missed in previous processing of the survey.
Read full abstract