Over the past decade, the growing importance of machine learning-based structural health monitoring (SHM) for early-stage damage detection has become evident. Time series forecasting, using deep learning, has emerged as a key focus, significantly contributing to improving damage detection, localization, and quantification processes. Researchers in SHM have conducted numerous studies utilizing neural networks based on time series forecasting, grounded in traditional methods. This study diverges from existing research by directly incorporating neural network prediction errors in time series for detecting, localizing, and quantifying damage. The proposed methods are well-suited for online structural monitoring. They eliminate the need for data classification methods and damage-sensitive feature extraction techniques by relying solely on training the neural network with data from structurally sound conditions. However, the testing process does require data from damaged conditions. To address the non-linear and non-stationary characteristics of the signals, the Improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (ICEEMDAN) method is applied for signal processing. This method processes response signals (i.e., time series) from three well-known benchmark structures: the University of Central Florida structure, the Qatar University Grandstand Simulator, and the Z24 Bridge. Subsequently, the first intrinsic mode function (IMF) obtained from signal decomposition is independently input into Long-Short Term Memory (LSTM) and Gated Recurrent Unit (GRU) neural networks for time series prediction. Optimal parameter values for the LSTM and GRU neural networks are chosen using the Bayesian Optimization (BO) algorithm before the prediction process. By introducing three indices—Statistical Distance Function (SDF), error index, and accuracy index—the evaluation not only emphasizes the accuracy of the methods but also explores the localization and quantification of damage. The results demonstrate that both ICEEMDAN-BO-LSTM-SDF and ICEEMDAN-BO-GRU-SDF methods have successfully achieved accurate detection, localization, and quantification without the need for data classification and damage-sensitive feature extraction methods, and merely by utilizing data from healthy states for neural network training.
Read full abstract