Prolate spheroidal wave functions (PSWFs) possess many remarkable properties. They are orthogonal basis of both square integrable space of finite interval and the Paley–Wiener space of bandlimited functions on the real line. No other system of classical orthogonal functions is known to obey this unique property. This raises the question of whether they possess these properties in Clifford analysis. The aim of the article is to answer this question and extend the results to more flexible integral transforms, such as offset linear canonical transform. We also illustrate how to use the generalized Clifford PSWFs (for offset Clifford linear canonical transform) we derive to analyze the energy preservation problems. Clifford PSWFs is new in literature and has some consequences that are now under investigation. Copyright © 2012 John Wiley & Sons, Ltd.