Given a linear second-order differential operator {mathcal {L}}equiv phi ,D^2+psi ,D with non zero polynomial coefficients of degree at most 2, a sequence of real numbers lambda _n, ngeqslant 0, and a Sobolev bilinear form B(p,q)=∑k=0Nuk,p(k)q(k),N⩾0,\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\begin{aligned} {\\mathcal {B}}(p,q)\\,=\\,\\sum _{k=0}^N\\left\\langle {{\\mathbf {u}}_k,\\,p^{(k)}\\,q^{(k)}}\\right\\rangle , \\quad N\\geqslant 0, \\end{aligned}$$\\end{document}where {mathbf {u}}_k, 0leqslant k leqslant N, are linear functionals defined on polynomials, we study the orthogonality of the polynomial solutions of the differential equation {mathcal {L}}[y]=lambda _n,y with respect to {mathcal {B}}. We show that such polynomials are orthogonal with respect to {mathcal {B}} if the Pearson equations D(phi ,{mathbf {u}}_k)=(psi +k,phi '),{mathbf {u}}_k, 0leqslant k leqslant N, are satisfied by the linear functionals in the bilinear form. Moreover, we use our results as a general method to deduce the Sobolev orthogonality for polynomial solutions of differential equations associated with classical orthogonal polynomials with negative integer parameters.
Read full abstract