One of the most conserved cellular pathways among eukaryotes is the extensively studied classical protein nuclear import pathway mediated by importin-α. Classical nuclear localization signals (cNLSs) are recognized by importin-α and are highly predictable due to their abundance of basic amino acids. However, various studies in model organisms have repeatedly demonstrated that only a fraction of nuclear proteins contain identifiable cNLSs, including those that directly interact with importin-α. Using data from the Human Protein Atlas and the Human Reference Interactome, and proteomic data from BioID/protein-proximity labeling studies using multiple human importin-α proteins, we determine that nearly 50% of the human nuclear proteome does not have a predictable cNLS. Surprisingly, between 25% and 50% of previously identified human importin-α cargoes do not have predictable cNLS. Analysis of importin-α cargo without a cNLS identified an alternative basic rich motif that does not resemble a cNLS. Furthermore, several previously suspected piggybacking proteins were identified, such as those belonging to the RNA polymerase II and transcription factor II D complexes. Additionally, many components of the mediator complex interact with at least one importin-α, yet do not have a predictable cNLS, suggesting that many of the subunits may enter the nucleus through an importin-α-dependent piggybacking mechanism.
Read full abstract