A review of the generic features as well as the exact analytical solutions of a class of coupled scalar field equations governing nonlinear wave modulations in dispersive media like plasmas is presented. The equations are derivable from a Hamiltonian function which, in most cases, has the unusual property that the associated kinetic energy is not positive definite. To start with, a simplified derivation of the nonlinear Schrodinger equation for the coupling of an amplitude modulated high-frequency wave to a suitable low-frequency wave is discussed. Coupled sets of time-evolution equations like the Zakharov system, the Schrodinger-Boussinesq system and the Schrodinger-Korteweg-de Vries system are then introduced. For stationary propagation of the coupled waves, the latter two systems yield a generic system of a pair of coupled, ordinary differential equations with many free parameters. Different classes of exact analytical solutions of the generic system of equations are then reviewed. A comparison between the various sets of governing equations as well as between their exact analytical solutions is presented. Parameter regimes for the existence of different types of localized solutions are also discussed. The generic system of equations has a Hamiltonian structure, and is closely related to the well-known Henon-Heiles system which has been extensively studied in the field of nonlinear dynamics. In fact, the associated generic Hamiltonian is identically the same as the generalized Henon-Heiles Hamiltonian for the case of coupled waves in a magnetized plasma with negative group dispersion. When the group dispersion is positive, there exists a novel Hamiltonian which is structurally same as the generalized Henon-Heiles Hamiltonian but with indefinite kinetic energy. The above correspondence between the two systems has been exploited to obtain the parameter regimes for the complete integrability of the coupled waves. There exists a direct one-to-one correspondence between the known integrable cases of the generic Hamiltonian and the stationary Hamiltonian flows associated with the only integrable nonlinear evolution equations (of polynomial and autonomous type) with a scale-weight of seven. The relevance of the generic system to other equations like the self-dual Yang-Mills equations, the complex Korteweg-de Vries equation and the complexified classical dynamical equations has also been discussed.