In [1], the authors argued that the Newman-Janis algorithm on the space of classical solutions in general relativity and electromagnetism could be used in the space of scattering amplitudes to map an amplitude with external scalar states to an amplitude associated to the scattering of “infinite spin particles”. The minimal coupling of these particles to the gravitational or Maxwell field is equivalent to the classical coupling of the Kerr blackhole with linearized gravity or the so-called Kerr\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ \\sqrt{\ extrm{Kerr}} $$\\end{document} charged state with the electromagnetic field. The action of the Newman-Janis mapping on scattering amplitudes was then used to compute the linear impulse at first post-Minkowskian (1PM) order, via the Kosower, Maybee, O’Connell (KMOC) formalism. In this paper, we continue with the idea of using the Newman-Janis mapping on the space of scalar QED amplitudes to compute classical observables such as the radiative gauge field and the angular impulse. We show that for tree-level amplitudes, the Newman-Janis action can be reinterpreted as a dressing of the photon propagator. This turns out to be an efficient way to compute these classical observables. Along the way, we highlight a subtlety that arises in proving the conservation of angular momentum for scalar −Kerr\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ -\\sqrt{\ extrm{Kerr}} $$\\end{document} scattering.