The aim of this study was to investigate the underlying mechanism of chrysophanol(Chr) in reducing inflammation and foam cell formation induced by oxidized low-density lipoprotein(ox-LDL) and to investigate the targets and pathways related to effects of Chr on coronary atherosclerosis, providing a theoretical basis for the development of new clinical drugs. RAW264.7 macrophages were cultured in vitro, and after determining the appropriate concentrations of Chr and ox-LDL for treating RAW264.7 macrophages using a cell counting kit-8(CCK-8), the macrophages were treated with different concentrations of Chr(10, 15 μmol·L~(-1)) and ox-LDL(with or without 80 mg·mL~(-1)) for 24 h. RAW264.7 macrophages were divided into four groups: control group, model group(80 mg·mL~(-1) ox-LDL), treatment group(80 mg·mL~(-1) ox-LDL+10 μmol·L~(-1) Chr), and treatment group(80 mg·mL~(-1) ox-LDL+15 μmol·L~(-1) Chr). Lipid accumulation in each group was detected by oil red O staining. CD36 expression was analyzed by flow cytometry. Western blot was used to detect the expression of scavenger receptor class A1(SR-A1), scavenger receptor class B type Ⅰ(SR-B1), autophagy-related protein 5(Atg5), Beclin-1, autophagy adaptor protein p62(P62), the ratio of microtubule-associated protein light chain 3(LC3)Ⅱ to LC3Ⅰ(LC3Ⅱ/LC3Ⅰ), nuclear factor kappa B P65(NF-κB P65), inhibitor of κB kinase β(IKKβ), nuclear factor of κB inhibitor(IκB), high mobility group box protein 1(HMGB1), phosphatidylinositol 3-kinase(PI3K), protein kinase B(Akt), and phosphorylated mammalian target of rapamycin(mTOR). Real-time quantitative polymerase chain reaction(RT-qPCR) was used to detect the mRNA expression levels of ATP-binding cassette transporter A1(ABCA1), ATP-binding cassette transporter G1(ABCG1), interleukin-1β(IL-1β), tumor necrosis factor-α(TNF-α), HMGB1, inducible nitric oxide synthase(iNOS), arginase 1(Arg1), macrophage galactose-type lectin-1(Mgl-1), and NF-κB P65. Immunofluorescence analysis was performed to determine the localization of HMGB1 in RAW264.7 cells in each group. The autophagy inhibitor 3-methyladenine(3-MA) was added as a control for reverse validation, and the RAW264.7 macrophages were divided into four groups again: control group, model group(80 mg·mL~(-1) ox-LDL), treatment group(80 mg·mL~(-1) ox-LDL + 15 μmol·L~(-1) Chr), and inhibitor group(80 mg·mL~(-1) ox-LDL+15 μmol·L~(-1) Chr+3-MA). The results showed that Chr effectively reduced foam cell formation by regulating the expression levels of SR-A1, ABCA1, ABCG1, the LC3Ⅱ/LC3Ⅰ ratio, Atg5, Beclin-1, and p62, and inhibited the NF-κB/HMGB1-PI3K/Akt/mTOR signaling pathway. Moreover, the inhibitory effects of Chr on autophagy and the NF-κB/HMGB1-PI3K/Akt/mTOR pathway were reversed by the autophagy inhibitor 3-MA. In conclusion, Chr exhibits therapeutic potential for the treatment of atherosclerosis by inducing autophagy and modulating the NF-κB/HMGB1 and PI3K/Akt/mTOR pathways to inhibit the formation of macrophage inflammatory foam cells.
Read full abstract