In this paper, new operational matrices (OMs) of ordinary and fractional derivatives (FDs) of a first finite class of classical orthogonal polynomials (FFCOP) are introduced. Also, two algorithms are proposed for using the tau and collocation spectral methods (SPMs) to get new approximate solutions to the given fractional differential equations (FDEs). These algorithms convert the given FDEs subject to initial/boundary conditions (I/BCs) into linear or nonlinear systems of algebraic equations that can be solved using appropriate solvers. To demonstrate the robustness, efficiency, and accuracy of the proposed spectral solutions, several illustrative examples are presented. The obtained results show that the proposed algorithms exhibit higher accuracy compared to existing techniques in the literature. Furthermore, an error analysis is provided.