This work is considered in the framework of studies dedicated to the control problems, especially in epidemiology where the scientist are concerned to develop effective control strategies to minimize the number of infected individuals. In this paper, we set this problem as an asymptotic target control problem under mixed state-control constraints, for a general class of ordinary differential equations that model the temporal evolution of disease spread. The set of initial data, from which the number of infected people decrease to zero, is generated by a new type of Lyapunov functions defined in the sense of viability theory. The associated controls are provided via selections of adequately designed feedback map. The existence of such selections is improved by using Micheal selection theorem. Finally, an application to the SIRS epidemic model, with numerical simulations, is given to show the efficiency of our approach. To the best of our knowledge, our work is the first one that used a set-valued approach based on the viability theory to deal with an epidemic control problem.