We formally link the concept of steering (a concept created by Schrodinger but only recently formalized by Wiseman, Jones and Doherty Phys. Rev. Lett. 98 140402 (2007)]) and the criteria for demonstrations of Einstein-Podolsky-Rosen (EPR) paradox introduced by Reid Phys. Rev. A 40 913 (1989)]. We develop a general theory of experimental EPR-steering criteria, derive a number of criteria applicable to discrete as well as continuous-variable observables, and study their efficacy in detecting that form of nonlocality in some classes of quantum states. We show that previous versions of EPR-type criteria can be rederived within this formalism, thus unifying these efforts from a modern quantum-information perspective and clarifying their conceptual and formal origin. The theory follows in close analogy with criteria for other forms of quantum nonlocality (Bell nonlocality and entanglement), and because it is a hybrid of those two, it may lead to insights into the relationship between the different forms of nonlocality and the criteria that are able to detect them.