The problem of fuzzy adaptive prescribed performance control with dynamic event-triggered input for a class of uncertain nonlinear systems is investigated in this article. A dynamic event-triggered scheme is proposed that integrates an internal dynamic variable and an exponentially decreasing function, effectively reducing unnecessary trigger events and minimizing the system of communication resources. Subsequently, a fuzzy estimator is designed to estimate the unmeasurable states of the system, while fuzzy logic systems are employed to approximate the uncertain nonlinear terms. The proposed scheme ensures semi-globally uniformly ultimately bounded (SGUUB) of the closed-loop system and converges the tracking error to a prescribed performance range based on a barrier Lyapunov function. Finally, a simulation example is given to justify the rationality of the proposed strategy.