Abstract

This brief presents a modified event-triggered command filter backstepping tracking control scheme for a class of uncertain nonlinear systems with unknown input saturation based on the adaptive neural network (NN) technique. First, the virtual control functions are reconstructed to address the uncertainties in subsystems by using command filters. A piecewise continuous function is employed to deal with the unknown input saturation problem. Next, an event-triggered tracking controller is developed by utilizing the adaptive NN technique. Compared with standard NN control schemes based on multiple-function-approximators, our controller only requires a single NN. The closed-loop system stability is analyzed based on the Lyapunov stability theorem, and it is shown that the Zeno behavior is also avoided under the designed event-triggering mechanism. Simulation studies are performed to validate the effectiveness of our controller.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.