We are concerned with ground-state solutions for the following Kirchhoff type equation with critical nonlinearity: \t\t\t{−(ε2a+εb∫R3|∇u|2)Δu+V(x)u=λW(x)|u|p−2u+|u|4uin R3,u>0,u∈H1(R3),\\documentclass[12pt]{minimal}\t\t\t\t\\usepackage{amsmath}\t\t\t\t\\usepackage{wasysym}\t\t\t\t\\usepackage{amsfonts}\t\t\t\t\\usepackage{amssymb}\t\t\t\t\\usepackage{amsbsy}\t\t\t\t\\usepackage{mathrsfs}\t\t\t\t\\usepackage{upgreek}\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\t\t\t\t\\begin{document}$$\\textstyle\\begin{cases} - ({\\varepsilon^{2}}a + \\varepsilon b\\int_{{\\mathbb{R}^{3}}} {{{ \\vert {\\nabla u} \\vert }^{2}}} )\\Delta u + V(x)u = \\lambda W(x){ \\vert u \\vert ^{p - 2}}u + { \\vert u \\vert ^{4}}u\\quad {\\text{in }}{\\mathbb{R}^{3}} ,\\\\ u > 0, \\quad\\quad u \\in{H^{1}}({\\mathbb{R}^{3}}) , \\end{cases} $$\\end{document} where ε is a small positive parameter, a,b>0, lambda > 0, 2 < p le4, V and W are two potentials. Under proper assumptions, we prove that, for varepsilon > 0 sufficiently small, the above problem has a positive ground-state solution {u_{varepsilon}} by using a monotonicity trick and a new version of global compactness lemma. Moreover, we use another global compactness method due to Gui (Commun. Partial Differ. Equ. 21:787-820, 1996) to show that {u_{varepsilon}} is concentrated around a set which is related to the set where the potential V(x) attains its global minima or the set where the potential W(x) attains its global maxima as varepsilon to0.
Read full abstract