In this paper, a normal S-iterative algorithm is studied and analyzed for solving a general class of variational inequalities involving a set of fixed points of nonexpansive mappings and two nonlinear operators. It is shown that the proposed algorithm converges strongly under mild conditions. The rate of convergence of the proposed iterative algorithm is also studied. An equivalence of convergence between the normal S-iterative algorithm and Algorithm 2.6 of Noor (J. Math. Anal. Appl. 331, 810–822, 2007) is established and a comparison between the two is also discussed. As an application, a modified algorithm is employed to solve convex minimization problems. Numerical examples are given to validate the theoretical findings. The results obtained herein improve and complement the corresponding results in Noor (J. Math. Anal. Appl. 331, 810–822, 2007).
Read full abstract