The capacity of limb bones to resist the locomotor loads they encounter depends on both the pattern of those loads and the material properties of the skeletal elements. Among mammals, understanding of the interplay between these two factors has been based primarily on evidence from locomotor behaviors in upright placentals, which show limb bones that are loaded predominantly in anteroposterior bending with minimal amounts of torsion. However, loading patterns from the femora of opossums, marsupials using crouched limb posture, show appreciable torsion while the bone experiences mediolateral (ML) bending. These data indicated greater loading diversity in mammals than was previously recognized, and suggested the possibility that ancestral loading patterns found in sprawling lineages (e.g., reptilian sauropsids) might have been retained among basal mammals. To further test this hypothesis, we recorded in vivo locomotor strains from the femur of the nine-banded armadillo (Dasypus novemcinctus), a member of the basal xenarthran clade of placental mammals that also uses crouched limb posture. Orientations of principal strains and magnitudes of shear strains indicate that armadillo femora are exposed to only limited torsion; however, bending is essentially ML, placing the medial aspect of the femur in compression and the lateral aspect in tension. This orientation of bending is similar to that found in opossums, but planar strain analyses indicate much more of the armadillo femur experiences tension during bending, potentially due to muscles pulling on the large, laterally positioned third trochanter. Limb bone safety factors were estimated between 3.3 and 4.3 in bending, similar to other placental mammals, but lower than opossums and most sprawling taxa. Thus, femoral loading patterns in armadillos show a mixture of similarities to both opossums (ML bending) and other placentals (limited torsion and low safety factors), along with unique features (high axial tension) that likely relate to their distinctive hindlimb anatomy.
Read full abstract