Proteomic analysis of bovine conceptus fluid proteins during early pregnancy has the potential to expose protein species indicative of both the overall health of the fetal-maternal environment and fetal developmental status. In this study, we examined the differential abundance of bovine conceptus fluid proteins (5-50 kDa fraction) from naturally conceived, in vitro fertilisation (IVF) and somatic cell nuclear transfer (SCNT)-derived pregnancies at days 45 and 90 of gestation. In day 45 allantoic fluid (AllF) samples, an atypical cluster of low molecular weight ( approximately 14-16 kDa), low pI (between 3.0 and 4.5 pH units) protein species was increased in three of four IVF samples (30-100-fold increase in protein spot volumes compared to normal). These proteins were identified as paralogs of the bovine cathelicidin antimicrobial protein (CAMP) by MALDI-TOF MS peptide mass fingerprint and MALDI-TOF MS/MS peptide sequence analysis. Peptidoglycan recognition protein and serine (or cysteine) proteinase inhibitor clade B1, were also significantly increased in the corresponding IVF samples. In two of four SCNT AllF samples, a 2-10-fold increase in CAMP protein spot volumes were detected. No aberrant abundance levels of individual protein species were observed in amniotic fluid samples, or in day 90 IVF AllF samples. Identification of unique protein species present in the normal bovine AllF proteome at day 45 is also reported.