Indoor location-based services and applications need to obtain information about the indoor spatial layouts and topological relationships of indoor spaces. The 3D city modeling data standard CityGML describes the indoor geometric and semantic information of buildings, but the surfaces composing a volume are discrete, leading to invalid volumes. Moreover, the topological adjacency relationships of adjacent indoor spaces have not yet been described, which makes it difficult to realize effective queries and analyses for indoor applications. In this paper, we present a 3D topological data model for indoor spaces that adopts five topological primitives, namely, node, edge, loop, face, and solid, to describe the topological relationships of indoor spaces. Then, by improving the existing face-sorting method according to vector products in 3D space, a method for constructing 3D topological relationships for indoor spaces is proposed, which successively constructs the topological hierarchical combination of volume and the topological adjacency relationships of adjacent volumes. The experimental results show that by using the improved face-sorting method proposed in this work, the relative positions of faces are directly determined to sort the faces set, which avoids relatively cumbersome calculations and improves the efficiency of constructing 3D topological relationships for indoor spaces.
Read full abstract