Japanese encephalitis (JE), which is caused by the Japanese encephalitis virus (JEV), is a zoonotic, vector-borne neurotropic disease that remains a major cause of viral encephalitis in Asia. JEV is spread to humans through mosquitoes, and its primary transmission vector is Culex tritaeniorhynchus. Mosquitoes were sampled from three collection sites: Hanzhuang town in Weishan County, Taibai Lake in Jining city, and Dongping Lake in Shandong Province, China. Pyrethroid insecticide resistance bioassays were conducted using adult mosquitoes. Cx. tritaeniorhynchus and C. pipiens pallens populations in Hanzhuang town and Dongping Lake showed resistance to pyrethroid insecticides, and populations in Taibai Lake showed incipient resistance. Coquillettidia ochracea populations in Hanzhuang town presented resistance as well, while in Taibai Lake, resistance was incipient. A total of 16,711 mosquitoes were collected, identified, and divided into 346 pools for JEV testing. Cx. tritaeniorhynchus had the advantage of being a local mosquito species. Overall, 31 (22.96) of the 135 pools of Cx. Tritaeniorhynchus were positive for JEV. The overall maximum likelihood estimates of Cx. tritaeniorhynchus, C. pipiens pallens, and Cq. ochracea indicated pooled infection rates of 5.29/1000 mosquitoes (95% confidence interval [CI] = 3.67–7.42), 1.60/1000 mosquitoes (95% CI = 0.82–2.85), and 6.39/1000 mosquitoes (95% CI = 0.39–32.23), respectively. There were no significant differences in the pooled infection rates between the districts. The resistance to pyrethroids has increased the difficulty in controlling the mosquito vectors, especially JEV-positive mosquitoes. Given the changes in the JEV transmission vectors, the spatial and temporal diversity and the dynamic variety of mosquito species, insecticide resistance and global warming have the potential to facilitate the transmission of JE to humans.