Accurate categorization and timely control of leaf diseases are crucial for citrus growth. We proposed the Multi-Models Fusion Network (MMFN) for citrus leaf diseases detection based on model fusion and transfer learning. Compared to traditional methods, the algorithm (integrating transfer learning Alexnet, VGG, and Resnet) we proposed can address the issues of limited categories, slow processing speed, and low recognition accuracy. By constructing efficient deep learning models and training and optimizing them with a large dataset of citrus leaf images, we ensured the broad applicability and accuracy of citrus leaf disease detection, achieving high-precision classification. Herein, various deep learning algorithms, including original Alexnet, VGG, Resnet, and transfer learning versions Resnet34 (Pre_Resnet34) and Resnet50 (Pre_Resnet50) were also discussed and compared. The results demonstrated that the MMFN model achieved an average accuracy of 99.72% in distinguishing between diseased and healthy leaves. Additionally, the model attained an average accuracy of 98.68% in the classification of multiple diseases (citrus huanglongbing (HLB), greasy spot disease and citrus canker), insect pests (citrus leaf miner), and deficiency disease (zinc deficiency). These findings conclusively illustrate that deep learning model fusion networks combining transfer learning and integration algorithms can automatically extract image features, enhance the automation and accuracy of disease recognition, demonstrate the significant potential and application value in citrus leaf disease classification, and potentially drive the development of smart agriculture.