The Asian citrus psyllid (ACP) is the main vector of Citrus Huanglongbing, the most damaging citrus disease, causing significant financial losses in the citrus industry. Global warming has expanded the habitat of this pest, allowing it to continue its northward migration to China. Population genetic information of ACP is fundamentally essential for species management. This study investigated the genetic diversity and population structure of Chinese ACP using the mitochondrial cytochrome oxidase subunit I gene by dataset comprised 721 sequences from 27 geographic sites in China. Low haplotype diversity (0.323 ± 0.022) and low nucleotide diversity (0.00071 ± 0.00007) were observed in the entire population, which may indicate recent founder events. Twenty-three haplotypes were identified and clustered into 2 haplogroups: haplogroup I and haplogroup II. Haplogroup II included only 2 unique haplotypes, which occurred exclusively in the Southwest China ACP population. Genetic differentiation analyses were also indicative of Southwest China population was significantly differentiated from the remaining populations. Demographic history analysis showed that ACP population in China has experienced demographic expansion. Our results provided a better understanding of the genetic distribution patterns and structures of ACP populations in China.