Abstract Radially outward-propagating, diurnal pulses in tropical cyclones (TCs) are associated with TC intensity and structural changes. The pulses are observed to feature either cloud-top cooling or warming, so-called cooling pulses (CPs) or warming pulses (WPs), respectively, with CPs posing a greater risk for hazardous weather because they often assume characteristics of tropical squall lines. The current study evaluates the characteristics and origins of simulated CPs using various convection-permitting Weather Research and Forecasting (WRF) Model simulations of Hurricane Dorian (2019), which featured several CPs and WPs over the tropical Atlantic Ocean. CP evolution is tested against choice of microphysics parameterization, whereby the Thompson and Morrison schemes present distinct mechanisms for CP creation and propagation. Specifically, the Thompson CP is convectively coupled and propagates outward with a rainband within 100–300 km of the storm center. The Morrison CP is restricted to the cirrus canopy and propagates radially outward in the upper-level outflow layer, unassociated with any rainband, within 200–600 km of the storm center. The Thompson simulation better represents the observations of this particular event, but it is speculated that CPs in nature can resemble characteristics from either MP scheme. It is, therefore, necessary to evaluate pulses beyond just brightness temperature (e.g., reflectivity, rain rate), especially within simulations where full fields are available. Significance Statement Tropical cyclone size and structure are influenced by the time of day. Identifying and predicting such characteristics is critical for evaluating hazardous weather risk of storms close to land. While satellite observations are valuable for recognizing daily fluctuations of tropical cyclone clouds as seen from space, they do not reliably capture what occurs at the surface. To investigate the relationship between upper-level cloud oscillations and rainbands, this study analyzes simulations of a major hurricane along the coast of Florida. The results show that rainbands are not always tied to changes in cloud tops, suggesting multiple pathways toward the daily oscillation of upper-level tropical cyclone clouds.
Read full abstract