AbstractIn the summers of 2020 and 2022, the Western Pacific Subtropical High (WPSH) intensified extremely and extended westward. However, in summer 2020, the Yangtze River Valley (YRV) witnessed record‐breaking floods, while in 2022, an unprecedented and prolonged heatwave occurred. Distinctly, these two extreme events were caused by different effects of the WPSH: one is enhancement of the transportation of water vapor and the other is adiabatic heating caused by the descending airflow. In June–July 2020, the stable extension of the WPSH ridge line to South China directed a southwesterly airflow along its northwest flank, leading to sustained precipitation in the YRV. Additionally, the midlatitude circulation pattern featured two troughs and two ridges. Such a circulation configuration, combined with the strong and westward WPSH, enabled the continuous southward intrusion of cold air and northward transport of warm moist air, converging over the YRV, and thus influenced extreme persistent precipitation. In contrast, the WPSH covered the YRV almost entirely during summer 2022. Under this influence, the clear‐sky condition and descending airflow through adiabatic warming directly resulted in the heatwave. In addition, local land–atmosphere feedback was crucial in its development and persistence. The soil moisture deficit induced by high temperatures increased the sensible heat flux between the soil and atmosphere upward, further enhanced the surface air temperature and strengthened the heat dry condition.
Read full abstract