The objective of this paper is to develop a wearable circular UWB MIMO antenna array, consisting of four elements, that is capable of detecting and locating tumor cells within a heterogeneous breast phantom. The antenna element operates within a bandwidth from 2.4 GHz to 10.6 GHz when FR4 is used as the substrate, and extends from 2.57 GHz to 12.6 GHz when a Dacron fabric is used instead. The antenna is fabricated and measured, yielding highly similar results to the simulated outcomes. In the suggested detection system, one antenna is used for transmission, while the other antennas receive the transmitted signal. The employed antenna demonstrates gains of 5.49 dBi, 9.87 dBi, 11.9 dBi, and 14.7 dBi at resonant frequencies of 2.84 GHz, 3.87 GHz, 5.83 GHz, and 8.24 GHz, respectively, when a Dacron fabric is used as the substrate. Moreover, the proposed antenna exhibits a flexible shape with minimal vertical and horizontal bending effects across the entire operating frequency band. The antenna has a compact size of 42.85 × 42.85 mm2 and is printed on an FR4 substrate with a dielectric constant of 4.5 and a thickness of 1.6 mm for testing purposes. The S-parameters of the suggested system can effectively identify and precisely locate small tumors. Furthermore, the SAR findings indicate that the amount of power absorbed by the breast phantom tissues complies with the IEEE standards, thus confirming the suitability of the recommended antenna for the early detection and localization of breast cancer.