Jalebi is one of the oldest Indian traditional fermented wheat-based confectioneries. Since jalebi is prepared by natural fermentation, diverse microbial community is expected to play bio-functional activities. Due to limited studies, information on microbial community structure in jalebi is unknown. Hence, the present study is aimed to profile the microbial community in jalebi by shotgun metagenomics and also to predict putative probiotic and functional genes by metagenome-assembled genome (MAG). Bacteria were the most abundant domain (91.91%) under which Bacillota was the most abundant phylum (82%). The most abundant species was Lapidilactobacillus dextrinicus followed by several species of lactic acid bacteria, acetic acid bacteria including few yeasts. Lap. dextrinicus was also significantly abundant in jalebi when compared to similar fermented wheat-based sourdough. Additionally, Lap. bayanensis, Pediococcus stilesii, and yeast- Candida glabrata, Gluconobacter japonicus, Pichia kudriavzevii, Wickerhamomyces anomalus were only detected in jalebi, which are not detected in sourdough. Few viruses and archaea were detected with < 1 % abundance. In silico screening of genes from the abundant species was mined using both KEGG and EggNOG database for putative health beneficial attributes. Circular genomes of five high-quality MAGs, identified as Lapidilactobacillus dextrinicus, Enterococcus hirae, Pediococcus stilesii, Acetobacter indonesiensis and Acetobacter cibinongensis, were constructed separately and putative genes were mapped and annotated. The CRISPR/Cas gene clusters in the genomes of four MAGs except Acetobacter cibinongensis were detected. MAGs also showed several secondary metabolites. Since, the identified MAGs have different putative genes for bio-functional properties, this may pave the way to selectively culture the uncultivated putative microbes for jalebi production. We believe this is the first report on metagenomic and MAGs of jalebi.
Read full abstract