In this paper, we consider solving potential equations by the boundary integral equation approach. The equations so derived are Fredholm integral equations of the first kind and are known to be ill-conditioned. Their discretized matrices are dense and have condition numbers growing like O(n) where n is the matrix size. We propose to solve the equations by the preconditioned conjugate gradient method with circulant integral operators as preconditioners. These are convolution operators with periodic kernels and hence can be inverted efficiently by using fast Fourier transforms. We prove that the preconditioned systems are well conditioned, and hence the convergence rate of the method is linear. Numerical results for two types of regions are given to illustrate the fast convergence. © 1998 John Wiley & Sons, Ltd.
Read full abstract