To determine the molecular composition of the components of basal bodies and the interbasal body apparatus of ciliated cells in rat tracheal epithelium, we used rabbit anti-actin, anti-alpha-actinin, anti-tropomyosin, and anti-myosin as primary antisera applied to the tissue in an indirect immunoperoxidase technique. The antisera was proven to be monospecific by elution of antibody after affinity chromatography. Sheep anti-rabbit immunoglobulin Fab fragments coupled to peroxidase were used for ultrastructural localization of the bound rabbit antibody. Antibodies against alpha-actinin were demonstrated around peripheral microtubules of cilia and linking these microtubules to central doublet and plasma membrane. Alpha-actinin was also shown in the basal foot processes. Anti-actin antibodies were associated with microtubules of the cilium and basal bodies, except in the region of the ciliary necklace. The antibodies directed against actin also had affinity for rootlets, basal foot processes, and communications between basal bodies and foot processes. Both anti-myosin and anti-tropomyosin antibodies were localized to part of the region of the constriction of the cilium, to the central basal density and the outer surfaces of basal body microtubules, and to the basal foot processes together with their communications to the basal body. The data suggest active contractile function of basal bodies.