Ciguatera poisoning (CP) is endemic to several subtropical and tropical regions and is caused by the consumption of fish contaminated with ciguatoxins (CTXs). The recent discovery of Caribbean CTXs (C-CTXs) in Gambierdiscus spp. isolated from the Caribbean resulted in the identification of a precursor analogue, C-CTX5, that is reduced into C-CTX1. C-CTX5 has two reducible sites, a ketone at C-3 and hemiketal at C-56. Chemical reductions of C-CTX5 into C-CTX3/4 resulted in two peaks in the LC−HRMS chromatograms with a ratio that differed markedly from that observed in fish extracts and the reduction of C-CTX1 isolated from fish. Reduction of C-CTX5 should have produced four diastereoisomers of C-CTX3/4, prompting a more detailed study of the reduction products. LC–HRMS with a slow gradient was used to separate and detect the four stereoisomers of C-CTX3/4, and to determine the distribution of these analogues in naturally contaminated fish tissues and following chemical reduction of isolated analogues. The results showed that in naturally contaminated fish tissues C-CTX1/2 is a mixture of two diastereoisomers at C-3 and that C-CTX3/4 is a mixture of two pairs of diastereoisomers at C-3 and C-56. The data suggests that there is variability in the enzymatic reduction at C-3 and C-56 of C-CTXs in reef fish, leading to variations in the ratios of the four stereoisomers. Based on these findings, a naming convention for C-CTXs is proposed which aligns with that used for Pacific CTX congeners and will aid in the identification of the structure and stereochemistry of the different CTX analogues.