A 2D/3D nonrigid registration method is proposed that brings a 3D centerline model of the coronary arteries into correspondence with bi-plane fluoroscopic angiograms. The registered model is overlaid on top of interventional angiograms to provide surgical assistance during image-guided chronic total occlusion procedures, thereby reducing the uncertainty inherent in 2D interventional images. The proposed methodology is divided into two parts: global structural alignment and local nonrigid registration. In both cases, vessel centerlines are automatically extracted from the 2D fluoroscopic images, and serve as the basis for the alignment and registration algorithms. In the first part, an energy minimization method is used to estimate a global affine transformation that aligns the centerline with the angiograms. The performance of nine general purpose optimizers has been assessed for this problem, and detailed results are presented. In the second part, a fully nonrigid registration method is proposed and used to compensate for any local shape discrepancy. This method is based on a variational framework, and uses a simultaneous matching and reconstruction process to compute a nonrigid registration. With a typical run time of less than 3 s, the algorithms are fast enough for interactive applications. Experiments on five different subjects are presented and show promising results.
Read full abstract