Objective To investigate the effects of sodium-glucose co-transporter 2 inhibitor dapagliflozin on pulmonary vascular remodeling in a rat model of chronic hypoxic pulmonary arterial hypertension. Methods Eighteen female Sprague–Dawley rats were divided into three groups: control (CON), chronic hypoxia (HYP), and chronic hypoxia + dapagliflozin. The HYP and dapagliflozin groups were subjected to hypoxia and received saline or dapagliflozin. The CON group was normoxic and received saline. Body weight and fasting blood glucose were measured, and after 21 days, lung and heart tissues were analyzed for pulmonary artery reconstruction and right ventricular hypertrophy. Western blotting assessed Bax and Bcl-2 protein levels. Results Chronic hypoxia increased pulmonary artery wall thickness and lung fibrosis and caused right ventricular hypertrophy. Dapagliflozin reduced these changes, decreasing artery wall thickness, fibrosis, and hypertrophy while increasing the Bax/Bcl-2 ratio. Conclusion Dapagliflozin alleviates chronic hypoxia-induced pulmonary artery wall thickening and lung tissue fibrosis in rats, potentially through proapoptotic effects.
Read full abstract