Before de novo synthesized von Willebrand factor (vWF) leaves the endothelial cell, it undergoes endoproteolytic cleavage of its propeptide (vW antigen II). The processed vWF and propeptide are either released constitutively or, following activation of the endothelium, released through the regulated pathway. In a recent study (Borchiellini et al, Blood 88:2951, 1996), we showed that the half-life of mature vWF and of its propeptide differ fourfold to fivefold. We postulated that the molar ratio of the propeptide to mature vWF could serve as a tool to assess the extent of endothelial cell activation under physiologic and clinical conditions. To test this hypothesis, we measured mature vWF and propeptide in patients with documented acute and chronic vascular disease, including patients with thrombotic thrombocytopenic purpura (TTP), acute septicemia, and diabetes mellitus. These data were compared with experimental conditions in healthy subjects in which perturbation of the endothelium was simulated by physical exercise or by administration of 1-deamino-8-D-arginine vasopressin (DDAVP) or endotoxin. In all individuals of the latter study group, both vWF and propeptide levels were elevated during the acute phase of the experimentally induced vascular perturbation; at later time points after stimulation, only vWF levels remained elevated. In patients with sepsis and TTP, both vWF and propeptide were elevated several-fold. Thus, this pattern can readily be explained in terms of acute perturbation of the endothelium. In contrast, in patients with diabetes mellitus propeptide levels were only slightly elevated, whereas vWF levels were elevated twofold to threefold. This pattern is a typical feature of chronic, low-grade activation of the endothelium. These observations support our hypothesis that measurement of both propeptide and vWF levels allows to discriminate between chronic and acute phases of endothelial cell activation in vivo. Measurement of only vWF is less indicative in this respect.