SummaryHaploidization is invaluable for basic genetic research and crop breeding. The haploid bio-induction principle is an important topic that remains largely unexplored. In this study, both CenH3 RNAi and in vitro inhibition were used to simulate and induce haploids in allopolyploid crop. Notably, in vitro CenH3 inhibition showed that the results were much the same to that of RNAi in phenotype, chromosome behavior, microspore production, and haploid induction. Cytological analyses of RNAi and inhibitor-treated progenies revealed elimination of chromosomes, defective microspores with empty nuclei, thereby giving rise to pseudo male gametes, and haploid parthenogenesis induction. We found distinct defective empty microspores that were positively correlated with the decrease of CenH3 during RNAi manipulation. Investigation through both in vivo and in vitro studies revealed that haploidization was induced through the pseudo male gamete-mediated mock sexual reproduction. The present results provide insights for the haploid parthenogenesis induction process.